quadratically - translation to russian
DICLIB.COM
AI-based language tools
Enter a word or phrase in any language 👆
Language:     

Translation and analysis of words by artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

quadratically - translation to russian

OPTIMIZATION PROBLEM
Quadratically constrained quadratic programming; QCQP

quadratically      

общая лексика

квадратически

квадратично

с квадратом

Смотрите также

cumulative throughflow; fractional throughflow

quadratic integrability         
FUNCTION WHOSE SQUARED ABSOLUTE VALUE HAS FINITE INTEGRAL
Square-integrable; Square integrable; Square integrable function; L2 space; L2 Space; L2-space; L2-function; L2-inner product; L^2; Quadratic integrability; Quadratically integrable; Square-summable function; Square integrability; Quadratically integrable function; L² space; Square-integrable functions; Square-integrability

математика

интегрируемость с квадратом

quadratically integrable         
FUNCTION WHOSE SQUARED ABSOLUTE VALUE HAS FINITE INTEGRAL
Square-integrable; Square integrable; Square integrable function; L2 space; L2 Space; L2-space; L2-function; L2-inner product; L^2; Quadratic integrability; Quadratically integrable; Square-summable function; Square integrability; Quadratically integrable function; L² space; Square-integrable functions; Square-integrability

общая лексика

квадратично интегрируемый

интегрируемый с квадратом

Definition

nilpotent
[n?l'p??t(?)nt]
¦ adjective Mathematics becoming zero when raised to some positive integral power.
Origin
C19: from nil + L. potens, potent- 'power'.

Wikipedia

Quadratically constrained quadratic program

In mathematical optimization, a quadratically constrained quadratic program (QCQP) is an optimization problem in which both the objective function and the constraints are quadratic functions. It has the form

minimize 1 2 x T P 0 x + q 0 T x subject to 1 2 x T P i x + q i T x + r i 0 for  i = 1 , , m , A x = b , {\displaystyle {\begin{aligned}&{\text{minimize}}&&{\tfrac {1}{2}}x^{\mathrm {T} }P_{0}x+q_{0}^{\mathrm {T} }x\\&{\text{subject to}}&&{\tfrac {1}{2}}x^{\mathrm {T} }P_{i}x+q_{i}^{\mathrm {T} }x+r_{i}\leq 0\quad {\text{for }}i=1,\dots ,m,\\&&&Ax=b,\end{aligned}}}

where P0, …, Pm are n-by-n matrices and xRn is the optimization variable.

If P0, …, Pm are all positive semidefinite, then the problem is convex. If these matrices are neither positive nor negative semidefinite, the problem is non-convex. If P1, … ,Pm are all zero, then the constraints are in fact linear and the problem is a quadratic program.

What is the Russian for quadratically? Translation of &#39quadratically&#39 to Russian